Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
BMC Public Health ; 24(1): 863, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509526

ABSTRACT

BACKGROUND: Protecting public health from infectious diseases often relies on the cooperation of citizens, especially when self-care interventions are the only viable tools for disease mitigation. Accordingly, social aspects related to public opinion have been studied in the context of the recent COVID-19 pandemic. However, a comprehensive understanding of the effects of opinion-related factors on disease spread still requires further exploration. METHODS: We propose an agent-based simulation framework incorporating opinion dynamics within an epidemic model based on the assumption that mass media channels play a leading role in opinion dynamics. The model simulates how opinions about preventive interventions change over time and how these changes affect the cumulative number of cases. We calibrated our simulation model using YouGov survey data and WHO COVID-19 new cases data from 15 different countries. Based on the calibrated models, we examine how different opinion-related factors change the consequences of the epidemic. We track the number of total new infections for analysis. RESULTS: Our results reveal that the initial level of public opinion on preventive interventions has the greatest impact on the cumulative number of cases. Its normalized permutation importance varies between 69.67% and 96.65% in 15 models. The patterns shown in the partial dependence plots indicate that other factors, such as the usage of the pro-intervention channel and the response time of media channels, can also bring about substantial changes in disease dynamics, but only within specific ranges of the dominant factor. CONCLUSIONS: Our results reveal the importance of public opinion on intervention during the early stage of the pandemic in protecting public health. The findings suggest that persuading the public to take actions they may be hesitant about in the early stages of epidemics is very costly because taking early action is critical for mitigating infectious diseases. Other opinion-related factors can also lead to significant changes in epidemics, depending on the average level of public opinion in the initial stage. These findings underscore the importance of media channels and authorities in delivering accurate information and persuading community members to cooperate with public health policies.


Subject(s)
COVID-19 , Communicable Diseases , Epidemics , Social Media , Humans , Pandemics/prevention & control , Epidemics/prevention & control , COVID-19/epidemiology , Attitude , Public Health
2.
Epidemics ; 44: 100698, 2023 09.
Article in English | MEDLINE | ID: mdl-37354657

ABSTRACT

BACKGROUND: There is an urgent need to develop a cytomegalovirus (CMV) vaccine as it remains the leading cause of birth defects in the United States. While several CMV vaccine candidates are currently in late-stage clinical trials, the most effective vaccination program remains an open research question. METHODS: To take into account the critical uncertainties when evaluating the vaccine impact on both vertical (congenital) and horizontal CMV transmissions, we developed a CMV agent-based model representative of the US population and contact network structures. RESULTS: We evaluated 648 vaccination scenarios under various assumptions of vaccination age, vaccine efficacy, protection duration, and vaccination coverage. The optimal age of vaccination under all scenarios is shown to be during early childhood. However, a relatively modest benefit was also seen with vaccination of females of reproduction age (around age of 25) assuming near universal coverage and long vaccine-mediated protection. CONCLUSIONS: This study highlights the important need for a pediatric vaccination program in mitigating CMV in the United States. Our model is poised to investigate further location-based vaccine effectiveness questions in future planning of both clinical trials as well as eventual program implementation.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus Vaccines , Female , Child , Humans , Child, Preschool , United States/epidemiology , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/prevention & control , Vaccination , Computer Simulation , Cytomegalovirus Vaccines/therapeutic use , Forecasting
3.
PLoS One ; 17(12): e0270127, 2022.
Article in English | MEDLINE | ID: mdl-36584063

ABSTRACT

Zika Virus (ZIKV) is a flavivirus that is transmitted predominantly by the Aedes species of mosquito, but also through sexual contact, blood transfusions, and congenitally from mother to child. Although approximately 80% of ZIKV infections are asymptomatic and typical symptoms are mild, multiple studies have demonstrated a causal link between ZIKV and severe diseases such as Microcephaly and Guillain Barré Syndrome. Two goals of this study are to improve ZIKV models by considering the spread dynamics of ZIKV as both a vector-borne and sexually transmitted disease, and also to approximate the degree of under-reporting. In order to accomplish these objectives, we propose a compartmental model that allows for the analysis of spread dynamics as both a vector-borne and sexually transmitted disease, and fit it to the ZIKV incidence reported to the National System of Public Health Surveillance in 27 municipalities of Colombia between January 1 2015 and December 31 2017. We demonstrate that our model can represent the infection patterns over this time period with high confidence. In addition, we argue that the degree of under-reporting is also well estimated. Using the model we assess potential viability of public health scenarios for mitigating disease spread and find that targeting the sexual pathway alone has negligible impact on overall spread, but if the proportion of risky sexual behavior increases then it may become important. Targeting mosquitoes remains the best approach of those considered. These results may be useful for public health organizations and governments to construct and implement suitable health policies and reduce the impact of the Zika outbreaks.


Subject(s)
Aedes , Sexually Transmitted Diseases , Zika Virus Infection , Zika Virus , Animals , Female , Humans , Infectious Disease Transmission, Vertical , Mosquito Vectors , Sexual Behavior
4.
PLoS One ; 17(8): e0272130, 2022.
Article in English | MEDLINE | ID: mdl-35976903

ABSTRACT

Eastern Equine Encephalitis (EEE) is an arbovirus that, while it has been known to exist since the 1930's, recently had a spike in cases. This increased prevalence is particularly concerning due to the severity of the disease with 1 in 3 symptomatic patients dying. The cause of this peak is currently unknown but could be due to changes in climate, the virus itself, or host behavior. In this paper we propose a novel multi-season deterministic model of EEE spread and its stochastic counterpart. Models were parameterized using a dataset from the Florida Department of Health with sixteen years of sentinel chicken seroconversion rates. The different roles of the enzootic and bridge mosquito vectors were explored. As expected, enzootic mosquitoes like Culiseta melanura were more important for EEE persistence, while bridge vectors were implicated in the disease burden in humans. These models were used to explore hypothetical viral mutations and host behavior changes, including increased infectivity, vertical transmission, and host feeding preferences. Results showed that changes in the enzootic vector transmission increased cases among birds more drastically than equivalent changes in the bridge vector. Additionally, a 5% difference in the bridge vector's bird feeding preference can increase cumulative dead-end host infections more than 20-fold. Taken together, this suggests changes in many parts of the transmission cycle can augment cases in birds, but the bridge vectors feeding preference acts as a valve limiting the enzootic circulation from its impact on dead-end hosts, such as humans. Our what-if scenario analysis reveals and measures possible threats regarding EEE and relevant environmental changes and hypothetically suggests how to prevent potential damage to public health and the equine economy.


Subject(s)
Culicidae , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Eastern Equine , Encephalomyelitis, Equine , Animals , Chickens , Encephalomyelitis, Eastern Equine/epidemiology , Encephalomyelitis, Eastern Equine/veterinary , Horses , Humans , Insect Vectors , Seasons
5.
Entropy (Basel) ; 24(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35741562

ABSTRACT

With the goal of understanding if the information contained in node metadata can help in the task of link weight prediction, we investigate herein whether incorporating it as a similarity feature (referred to as metadata similarity) between end nodes of a link improves the prediction accuracy of common supervised machine learning methods. In contrast with previous works, instead of normalizing the link weights, we treat them as count variables representing the number of interactions between end nodes, as this is a natural representation for many datasets in the literature. In this preliminary study, we find no significant evidence that metadata similarity improved the prediction accuracy of the four empirical datasets studied. To further explore the role of node metadata in weight prediction, we synthesized weights to analyze the extreme case where the weights depend solely on the metadata of the end nodes, while encoding different relationships between them using logical operators in the generation process. Under these conditions, the random forest method performed significantly better than other methods in 99.07% of cases, though the prediction accuracy was significantly degraded for the methods analyzed in comparison to the experiments with the original weights.

6.
Netw Neurosci ; 5(3): 666-688, 2021.
Article in English | MEDLINE | ID: mdl-34746622

ABSTRACT

The quantification of human brain functional (re)configurations across varying cognitive demands remains an unresolved topic. We propose that such functional configurations may be categorized into three different types: (a) network configural breadth, (b) task-to task transitional reconfiguration, and (c) within-task reconfiguration. Such functional reconfigurations are rather subtle at the whole-brain level. Hence, we propose a mesoscopic framework focused on functional networks (FNs) or communities to quantify functional (re)configurations. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, trapping efficiency (TE) and exit entropy (EE), which capture topology and integration of information within and between a reference set of FNs. We use this framework to quantify the network configural breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks, and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence, and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.

7.
Netw Neurosci ; 5(3): 646-665, 2021.
Article in English | MEDLINE | ID: mdl-34746621

ABSTRACT

Modeling communication dynamics in the brain is a key challenge in network neuroscience. We present here a framework that combines two measurements for any system where different communication processes are taking place on top of a fixed structural topology: path processing score (PPS) estimates how much the brain signal has changed or has been transformed between any two brain regions (source and target); path broadcasting strength (PBS) estimates the propagation of the signal through edges adjacent to the path being assessed. We use PPS and PBS to explore communication dynamics in large-scale brain networks. We show that brain communication dynamics can be divided into three main "communication regimes" of information transfer: absent communication (no communication happening); relay communication (information is being transferred almost intact); and transducted communication (the information is being transformed). We use PBS to categorize brain regions based on the way they broadcast information. Subcortical regions are mainly direct broadcasters to multiple receivers; Temporal and frontal nodes mainly operate as broadcast relay brain stations; visual and somatomotor cortices act as multichannel transducted broadcasters. This work paves the way toward the field of brain network information theory by providing a principled methodology to explore communication dynamics in large-scale brain networks.

8.
Brain Connect ; 11(5): 333-348, 2021 06.
Article in English | MEDLINE | ID: mdl-33470164

ABSTRACT

Background: Functional connectomes (FCs) have been shown to provide a reproducible individual fingerprint, which has opened the possibility of personalized medicine for neuro/psychiatric disorders. Thus, developing accurate ways to compare FCs is essential to establish associations with behavior and/or cognition at the individual level. Methods: Canonically, FCs are compared using Pearson's correlation coefficient of the entire functional connectivity profiles. Recently, it has been proposed that the use of geodesic distance is a more accurate way of comparing FCs, one which reflects the underlying non-Euclidean geometry of the data. Computing geodesic distance requires FCs to be positive-definite and hence invertible matrices. As this requirement depends on the functional magnetic resonance imaging scanning length and the parcellation used, it is not always attainable and sometimes a regularization procedure is required. Results: In the present work, we show that regularization is not only an algebraic operation for making FCs invertible, but also that an optimal magnitude of regularization leads to systematically higher fingerprints. We also show evidence that optimal regularization is data set-dependent and varies as a function of condition, parcellation, scanning length, and the number of frames used to compute the FCs. Discussion: We demonstrate that a universally fixed regularization does not fully uncover the potential of geodesic distance on individual fingerprinting and indeed could severely diminish it. Thus, an optimal regularization must be estimated on each data set to uncover the most differentiable across-subject and reproducible within-subject geodesic distances between FCs. The resulting pairwise geodesic distances at the optimal regularization level constitute a very reliable quantification of differences between subjects.


Subject(s)
Connectome , Brain/diagnostic imaging , Cognition , Humans , Magnetic Resonance Imaging
9.
Netw Neurosci ; 4(3): 698-713, 2020.
Article in English | MEDLINE | ID: mdl-32885122

ABSTRACT

The identifiability framework (𝕀f) has been shown to improve differential identifiability (reliability across-sessions and -sites, and differentiability across-subjects) of functional connectomes for a variety of fMRI tasks. But having a robust single session/subject functional connectome is just the starting point to subsequently assess network properties for characterizing properties of integration, segregation, and communicability, among others. Naturally, one wonders whether uncovering identifiability at the connectome level also uncovers identifiability on the derived network properties. This also raises the question of where to apply the 𝕀f framework: on the connectivity data or directly on each network measurement? Our work answers these questions by exploring the differential identifiability profiles of network measures when 𝕀f is applied (a) on the functional connectomes, and (b) directly on derived network measurements. Results show that improving across-session reliability of functional connectomes (FCs) also improves reliability of derived network measures. We also find that, for specific network properties, application of 𝕀f directly on network properties is more effective. Finally, we discover that applying the framework, either way, increases task sensitivity of network properties. At a time when the neuroscientific community is focused on subject-level inferences, this framework is able to uncover FC fingerprints, which propagate to derived network properties.

10.
Sci Rep ; 7(1): 6673, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751777

ABSTRACT

Complex networks can model a wide range of complex systems in nature and society, and many algorithms (network generators) capable of synthesizing networks with few and very specific structural characteristics (degree distribution, average path length, etc.) have been developed. However, there remains a significant lack of generators capable of synthesizing networks with strong resemblance to those observed in the real-world, which can subsequently be used as a null model, or to perform tasks such as extrapolation, compression and control. In this paper, a robust new approach we term Action-based Modeling is presented that creates a compact probabilistic model of a given target network, which can then be used to synthesize networks of arbitrary size. Statistical comparison to existing network generators is performed and results show that the performance of our approach is comparable to the current state-of-the-art methods on a variety of network measures, while also yielding easily interpretable generators. Additionally, the action-based approach described herein allows the user to consider an arbitrarily large set of structural characteristics during the generator design process.

11.
PLoS Pathog ; 8(12): e1003076, 2012.
Article in English | MEDLINE | ID: mdl-23271970

ABSTRACT

As humans age, they experience a progressive loss of thymic function and a corresponding shift in the makeup of the circulating CD8+ T cell population from naïve to memory phenotype. These alterations are believed to result in impaired CD8+ T cell responses in older individuals; however, evidence that these global changes impact virus-specific CD8+ T cell immunity in the elderly is lacking. To gain further insight into the functionality of virus-specific CD8+ T cells in older individuals, we interrogated a cohort of individuals who were acutely infected with West Nile virus (WNV) and chronically infected with Epstein Barr virus (EBV) and Cytomegalovirus (CMV). The cohort was stratified into young (<40 yrs), middle-aged (41-59 yrs) and aged (>60 yrs) groups. In the aged cohort, the CD8+ T cell compartment displayed a marked reduction in the frequency of naïve CD8+ T cells and increased frequencies of CD8+ T cells that expressed CD57 and lacked CD28, as previously described. However, we did not observe an influence of age on either the frequency of virus-specific CD8+ T cells within the circulating pool nor their functionality (based on the production of IFNγ, TNFα, IL2, Granzyme B, Perforin and mobilization of CD107a). We did note that CD8+ T cells specific for WNV, CMV or EBV displayed distinct functional profiles, but these differences were unrelated to age. Collectively, these data fail to support the hypothesis that immunosenescence leads to defective CD8+ T cell immunity and suggest that it should be possible to develop CD8+ T cell vaccines to protect aged individuals from infections with novel emerging viruses.


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Virus Diseases/immunology , Adult , Aged , Aged, 80 and over , CD57 Antigens/immunology , Chronic Disease , Cohort Studies , Cytokines/immunology , Female , Granzymes/immunology , Humans , Lysosomal-Associated Membrane Protein 1/immunology , Male , Middle Aged , Viral Vaccines/therapeutic use , Virus Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...